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Equator projection sundials 

Bruno Ernst ( = J.A.F. de Rijk, Netherlands ) 

 

A discussion of elliptical analemmatic sundials shows that they are a subset of a group 

which has the property that the time is indicated by the intersection of a gnomon shadow 

with the projection of the equator circle. 

A systematic geometrical treatment of these leads to the discovery and presentation of a 

hitherto unknown subset designated the 'central projection dials'. 

Introduction 

Several kinds of equator projection sundial have been known since the seventeenth century. 

The original inventor is unknown, but in 1640 De Vaulezard (ref. 1) published an account of 

the construction of a horizontal sundial in which the hour points were situated on the 

circumference of an ellipse and the vertical gnomon had to be moved, according to the date, 

along the short axis of the ellipse. In 1654, Samuel Foster (ref. 2) published a book in which 

he treated the same subject extensively. He also described varieties of sundials that had the 

hour points on a circle or on a straight line; and a combination of two sundials in which the 

hour points were situated on the same circle, but which had two differently directed gnomons. 

This combination has been rediscovered several times in the following centuries. Since 

Foster's work, no new kinds of equator projection sundial have been found, but the theory has 

been made very much simpler. In 1757 Jerome Lalande (ref. 3) could still write: "This 

problem [the proof of the exactness of the construction] is one of the most difficult of the 

whole gnomonics". Among those who kept themselves busy with the theory of the 

analemmatic sundials one finds many well known astronomers and mathematicians. (ref. 4) 

The best treatment was found in 1951, by P. Terpstra. (ref. 5) He treated the analemmatic 

sundial as a projection of the equator circle, the time being indicated by the intersection of a 

gnomon shadow with this projection. After further examination, building on Terpstra's proof, 

it appeared to me that all known kinds of equator projection sundial can be derived from one 

principle of construction. This possibility showed up an endless number of new varieties. 

Furthermore, I discovered a still unknown family of sundials, based on a closely related 

principle of construction (ref. 11) . 

Two equator projection sundials 

One of the oldest and best known sundials of this kind can be seen in the square of Brou 

Cathedral (ref. 6) (in Bourg-en-Bresse, Ain, France). The hour points have been hewn in a 

stone ellipse with a long axis of 10m (33 ft) and a short axis of 8m (26 ft). The short axis lies 

in the direction of the meridian and on this axis a 4m (13 ft) long date scale has been fixed. If 

one puts a vertical gnomon on the exact place on the scale corresponding to the date, the 

gnomon's shadow intersects the ellipse at a position corresponding to the local apparent time 

(Figure 1). 
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Figure 1. View from above of the prototype of an equator projection sundial. G is a vertical 

gnomon at a point on the line of dates. The shadow of the gnomon indicates the true solar 

time on the circumference of the ellipse (here 9 o'clock, May l). 

A modern example of a kind first described by Foster (ref. 2) in 1654 is the equiangular 

sundial constructed by Gordon E. Taylor (ref. 7) at Herstmonceux Castle, East Sussex. (Now 

at Cambridge) This sundial was constructed in 1975 on the occasion of the third centenary of 

the Royal Greenwich Observatory. Here the hour points lie on a circle of stainless steel with a 

diameter of 3.2m (10 ft). This circle makes an angle of about 40 degrees with the horizontal, 

and the movable gnomon is vertical. Because the hour points are placed at equal distances 

around the circle, corrections for longitude, the equation of time and summer time can be 

carried out simply by turning the graduated scale so that this sundial can show standard time. 

 

The equiangular sundial at the Royal Greenwich Observatory, Herstmonceux Castle. The 

sundial now is at Cambridge. ( picture differs from the one in the original article ) 
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Orthographic projection of the equator circle 

Figure 2 shows the celestial sphere, with the horizon, the equator and the polar axis, for a 

latitude fi and Figure 3 the equator circle with part of the polar axis, 'taken out of' Figure 2. If 

the declination of the Sun is d, the part of the axis that appears above the equator is Rtan d 

(where R is the radius of the sphere). The top of this section of the axis is marked T. The 

shadow of T will fall exactly on the equator circle during the whole day, and it will move 15 

degrees during each hour. This makes it is easy to construct hour points on the equator. 

 

 

Figure 2.(left) The celestial sphere with horizon, equator and polar axis in perspective. 

Figure 3. (right) Meridian section, taken from Figure 2. 

In Figure 4 the equator circle has been drawn again with the same part of the polar axis, and 

here it is also projected onto a horizontal plane. The projection of the equator circle is an 

ellipse with the short axis in the N-S direction. A is an hour point (for example, the 11 o'clock 

point) on the equator circle. The projection of T and A are T' and A'; so A' is also the 11 

o'clock point on the ellipse. 
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Figure 4. Perpendicular projection of the equator circle on a horizontal plane. The shadow 

plane from TT' intersects the hour point A as well as the projection of the hour point A'. 

Now imagine that TT' is a gnomon for the horizontal dial. TT'AA' is then part of the shadow 

surface that the Sun casts of the gnomon. In the course of the day A, the shadow point of T, 

will travel along the equator circle with constant velocity, and at the same time the shadow 

line T'A' will intersect the ellipse in the hour points which are the rojections of the hour points 

on the equator circle. In the course of the year the gnomon TT' must be moved along the N-S 

line because T changes with the declination of the Sun. With this diagram we have 

constructed the prototype of the equator projection sundial: an ellipse with hour points plus a 

perpendicular gnomon which must be moved along the N-S line according to the value of the 

Sun's declination. So far, the derivation of this sundial is almost the same as Terpstra's. Now 

we give the following development of it. If in Figure 4 we turn the plane H round the N-S 

axis, or round the E-W axis, or round both, T will be projected on this plane V as T" and A as 

A", but T"A" is always a shadow line which shows the same hour on the projected equator 

circle as the shadow point A on the equator circle. So we may choose the projection plane at 

will. 

 

Figure 5. The direction of projection can be chosen at will. 
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The direction of the projection may also be chosen at will, as is shown in Figure 5. TAA'T' is 

the same plane as in Figure 4. We choose any point P of the projection plane and we fix with 

this a new direction of projection TP. When the hour point is projected in Q, where AQ is 

parallel to TP. If we use TP as gnomon, TAQP is the shadow plane and the shadow line PQ 

will indicate in Q the same time as TA in A. We can conclude that if we project the equator 

circle with the hour points plus part of the polar axis (with a length of 2Rtan 23.5) in any 

direction on any plane V, and if we put the gnomon on a place corresponding with the date on 

the projection of the polar axis parallel to the direction of the projection, the shadow of the 

gnomon indicates true solar time on the projected equator circle. This situation is shown again 

in Figure 6. 

 

Figure 6. A sundial always results if the equator circle and axis are projected on any plane in 

any direction. 

Because the lines of projection from the equator circle form a cylinder, of which the 

perpendicular section is an ellipse, any projecting plane will intersect this cylinder in general 

as an ellipse. There are however two circular sections: the equator circle itself and the mirror 

image of the equator circle in a plane at right angles to the axis of the cylinder. (We will 

return to this subject below.) With a certain choice of the projection direction, the projection 

of the circle degenerates into a line. We will describe all kinds of sundials which arise in this 

way as equator projection sundials. All the already known analemmatic sundials belong to 

this group. By this method they can be constructed simply, and from this construction the 

goniometric relations (desirable for a precise ealisation) can be deduced. 

A few examples 

To characterise the different directions of projection and the projection planes, we start from 

the projection of the equator circle and axis on the meridian plane. In the corresponding 

figures the projection lines have been dotted and the projection plane has been drawn as a 

double line. 
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a) A vertical sundial is possible, of course. The vertical plane is just one of the endless 

possibilities. After choosing vertical projection plane, the direction of projection is still 

completely free. 

b) We get rectilinear sundials, where the hour points are on a straight line, if the direction of 

projection is parallel to the equator plane. Thus the number of possibilities is unlimited, and 

the choice of the projection plane is still free afterwards. Figure 7 shows a sundial for an east 

wall with a gnomon that is at right angles to that wall. The direction of projection (left side of 

the figure) is perpendicular to the drawing plane. 

 

Figure 7. A linear sundial. 

c) All sundials with a polar style can also be derived from equator projection. We simply 

choose the direction of the polar axis as the direction of projection, and the line of dates then 

shrinks to a point. The choice of the projectionplane is free. 

d) When part of the line of dates is situated outside the ellipse, it is possible that on some 

dates the shadow of the gnomon can reverse its direction of rotation at certain times of day. 

(ref. 8) With reference to the Book of Kings, such a dial is called an Achaz sundial. We are 

not going further into this matter here, but in Figure 8 we give a direction of projection that 

fulfills the conditions necessary for a reversing shadow. There are many possibilities again. 

 

Figure 8. The line of dates falls partly outside the ellipse. 

e) With a suitable choice of the direction of projection, it is possible to make the line of dates 

as long as the axis of the ellipse, with a free choice of the projection plane (Figure 9). 
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Figure 9. The line of dates is as long as the short axis of the ellipse. 

f) It is not necessary that the short axis of the ellipse lie in the N-S direction. Figure 10 shows 

one of the possibilities for a sundial where the long axis lies in the N-S direction. 

 

Figure 10. The long axis of the ellipse is directed N-S. 

g) Homogeneous sundials are interesting. In such a dial, the hour points are situated on a 

circle at equal distances. We can get this situation in two ways. In Figure 11 we start from a 

given projection plane. We make A'B = AB. Then AA' is the direction of projection that 

produces a circular carrier for the hour line. There is also another possibility here. On the right 

hand side of B we choose A" so that A"B = AB. Then the direction of projection is AA". The 

second method is to start with a given direction of projection (Figure 12). The projecting line 

through A is l. Make BA' = BA whereby A' is stituated on l. Then A'D is the meridian section 

of the projecting plane. 
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Figure 11. (left) Two possible homogeneous sundials on a given projection plane. 

Figure 12. (right) A homogeneous sundial with given direction of projection. 

h) It is also possible of course to use completely arbitrary directions of projection and 

projection planes. In general one would hardly consider constructing one of these. Only in 

special circumstances (for instance for a sundial on a surface that has been fixed by 

architectural considerations) would such a sundial be desirable. 

A plural homogenous sundial 

We want to describe one sundial in a bit more detail. In Figure 11 we see two sundials in 

which the hour lines are situated on circles with equal radii. We can put both circles on top of 

each other; then we have one circle with two gnomons. The two lines of dates are generally 

not of the same length. But if we choose a projection plane parallel to the polar axis, the lines 

of dates become equal. In Figure 13 this plane has been placed through OZ. By circling NM 

to the left and to the right (NZ and NO) two circular sundials arise. Here the lines of dates are 

equal and we can put both circles on top of each other. The double gnomon has a V-shape, 

with the two gnomons at right angles. This double sundial can be extended in a simple way 

with a linear one. In Figure 13 we choose the direction of projection MN. The equator 

becomes a line and the line of dates as long again as TS. The third gnomon is now 

perpendicular to the projection plane. 
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Figure 13. Direction of projection and projection plane chosen so that two homogeneous 

sundials arise with equal lines of dates but differently directed gnomons. 

In a model of this triple sundial (Figure 14) I used a plastic drawing triangle as gnomon 

(ABV). Gnomon AV casts a shadow on the upper half of the circle and BV on the lower half. 

Gnomon VC belongs to the linear sundial EW. The point line of dates is PQ. Because the 

projection plane runs parallel to the polar axis, AB can also be used as the gnomon for a polar 

sundial. The hour lines of this are circled in the figure. (This quadruple sundial is self 

directing of course). 

 

Figure 14. Quadruple sundial: two have the same hour point circle. The third one is linear 

and the fourth is a normal polar sundial. 

Central projection 

It is also possible to project the equator circle and axis from a point, and I wondered if it 

would be possible to construct sundials in this way. 
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Figure 15. A sundial also arises with projection from a point. 

In Figure 15 the equator circle has been projected from S onto V. A gnomon STT' appears to 

cast on V a shadow line T'A', which intersects the ellipse in a point A' that is the projection of 

the hour point A of the equator circle. Thus the ellipse in plane V with hour points projected 

on it forms a sundial with the gnomon TT'. The projection plane and projection centre can be 

chosen at will here too. The proof of this is the same as we have given for the orthographic 

projection. This projection results in a noteworthy group of sundials, which is new as far as I 

know. 

They have the following properties: 

The projection plane always intersects the cone as a conical section. So now we can consider 

not only the ellipse, circle and line as the bearer of the hour point, but also the parabola and 

hyperbola. 

 

The gnomon must not only be moved according to the date, but at the same time we must 

change its direction to ensure that the gnomon always points to the projection centre S. This 

second requirement seems difficult to achieve in practice. However, by describing a sundial 

from this group we will show how the simultaneous move and change in direction can be 

realised in a simple way.  
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Example of a central projection sundial 

 

Figure 16. The construction of a sundial by means of central projection, with the hour points 

situated on a circle. 

In Figure 16 the meridian section AB of the equator has been drawn for latitude fi (here 52 

degrees). The hour points have been constructed on AB as we see them projected on the 

meridian plane. A scale of dates has been constructed on axis DC. The projection centre F is 

chosen so that the equator circle will be projected on the horizontal plane as a circle. We 

achieve this by drawing a circle with diameter AB. FMF' is a perpendicular line on the 

horizontal plane. If we imagine the circle to be a picture of the sphere then we have here a 

stereographic projection of the equator circle from F on the plane perpendicular to FF'. With 

the stereographic projection a circle on a sphere is always projected as a circle. So A'B' is the 

diameter of the projected equator circle. Half of this circle has been drawn as it looks on the 

horizontal plane. We project the hour points from AB onto A'B', and then we move them onto 

the circumference of the half circle. Then the date points are projected onto A'B'. (In Figure 

16 only the end points D' and C' of the date line have been projected.) With this we have 

finished the construction. Above the hour line plane we must put a fixed point F and it must 

be possible to direct the gnomon from any point of the line of dates towards F. There is an 

interesting solution to this problem. We combine this equator projection sundial with a 

horizontal sundial with polar style. One point of this style can serve to fasten a piece of cord 

which forms the movable gnomon for the equator projection sundial. In Figure 16 it appears 

that NF is perpendicular to AB (this is simple to prove). Hence NF can serve as polar style for 

a horizontal sundial. 
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Figure 17. The practical construction of the sundial of Figure 16 is combined with a polar 

style. 

The result is shown in Figure 17. The polar style (length NF) stands in the centre. The 

matching sundial with hour lines is circumscribed by a rectangle. The hour points for the 

equator projection sundial are on a circle; the matching line of dates can be seen as a N-S 

directed groove. The gnomon of this sundial is formed by a piece of cord that goes from the 

top of the polar style to the relevant point on the line of dates. The cord is anchored in the 

required position by a ring-shaped ferrite magnet, which attaches itself to a flat piece of iron 

that is affixed below the line of dates. The double sundial is self directing because the 

indication of time is based on two different principles (ref. 9) '. The polar style is in the 

meridian plane only when both sundials indicate the same time (and when they indicate 12 

o'clock as is the case with most self directing sundials). 

Remarks 

The name 'analemmatic sundial' has not been very happily chosen. De Vaulezard (ref. 1) 

probably chose it because he used a projection of the sphere on the meridian plane for his 

construction. Since the time of Vitruvius (25 ac) this projection has been named the 

analemma. A little less then two centuries later, Ptolemy wrote an essay about the analemma; 

this is however a fairly complicated graphic method for the solution of problems in spherical 

trigonometry (ref. 10) , and the name is quite irrelevant in connection with this type of 

sundial. Nor is the term 'azimuthal sundial', used by Foster (ref. 2) (and after him by many 

others) suitable to describe the whole family of sundials. Only with a horizontal projection 

plane and a vertical gnomon does the shadow of the gnomon indicate the Sun's azimuth. I 

suggest they should be called 'equator projection sundials' because this name describes a 

principle of construction with which all already known analemmatic sundials and a number of 

new forms can be produced. 
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