## A UNIFORM METHOD TO COMPUTE FLAT SUNDIALS

## usable all over the world

by fer j . de vries, netherlands

example of sundials on a dodecahedron
date: january 1997, revised october 2002

Last Modified 02/05/2004 09:16:26

## preface

In these pages you find the basic procedures to compute all kinds of lines for a flat sundial. The procedures form a suitable basis for computer programs.
The definitions have been formulated so that the method is uniform in all situations, for both the northern and southern hemispheres and for any plane, no matter what its orientation.

The principle of a sundial is to convert a certain sun's position into coordinates for a shadow point on the dial's face. An uniform main procedure does this job.
Secondary procedures are used to find a number of points for any line you want to calculate.
All the drawings and pictures of sundials on these pages are computed with these procedures.

vertical south-east facing sundial at southern latitude $40^{\circ}$.

$$
\left(\mathrm{phi}=-40^{\circ}, \mathrm{i}=90^{\circ}, \mathrm{d}=-45^{\circ}\right)
$$

## definitions

phi latitude of the place of the dial. $-90^{\circ}<=\mathrm{phi}<=90^{\circ}$, northern latitude positive, southern latitude negative.
g length of (pin) gnomon perpendicular to the dials plane. The tip of the gnomon is the shadow casting point. g $>0$.
i inclination of the plane: the zenith distance of the endpoint of the (pin) gnomon. $0^{\circ}<=\mathrm{i}<180^{\circ}$. (horizontal $\mathrm{i}=0$ vertical $\mathrm{i}=90$ )
d declination of the plane: azimuth of the gnomon: south $=0^{\circ}$, positive to west, negative to east. $-180^{\circ}<=\mathrm{d}<=180^{\circ}$.

SM standard meridian of time zone. Greenwich $=0^{\circ}$, positive to west, negative to east. $-180^{\circ}<=\mathrm{SM}<=180^{\circ}$.

LM local meridian. ( longitude of the place of the sundial. ) Greenwich $=0^{\circ}$, positive to west, negative to east. $-180^{\circ}<=\mathrm{LM}<=180^{\circ}$.
LC longitude correction $\mathrm{LC}=\mathrm{SM}-\mathrm{LM}$.
E equation of time in degrees. In november $E$ is positive. Conversion minutes of time into degrees: 1 minute $=0.25$ degrees.
v height of a style relative to the dial's plane, parallel to the earth axis. $-90^{\circ}<=\mathrm{v}<=90^{\circ}$.
b angle of substyle, measured from y-axis. pos. anti clockwise. $-180^{\circ}<=\mathrm{b}<=180^{\circ}$.
ts hourangle of substyle. $-180^{\circ}<=$ ts $<=180^{\circ}$.
decl declination of the sun, pos. if sun in northern hemisphere, neg. in southern hemisphere. $-23 .{ }^{\circ} 5<=\operatorname{decl}<=23 .{ }^{\circ} 5$
t hourangle of the sun: noon $=0^{\circ}$, positive. to west, negative to east. $-180^{\circ}<=\mathrm{t}<=180^{\circ}$.
$\mathbf{x}, \mathbf{y}$ coordinates of shadow point. Footpoint gnomon $=0,0$. $\mathbf{x}$ to right, y upwards. For horizontal dial x east, y north.
dn daynumber. January first at 00:00:00 is daynumber 1.0, at 12:00:00 is daynumber 1.5.
... diverse other variables are used in the procedures as $\mathrm{x} 0, \mathrm{y} 0, \mathrm{z} 0, \mathrm{x} 1, \mathrm{y} 1, \mathrm{z} 1$, day, mth and so on. See the procedures.

While these definitions are, of course, arbitrary, many of them are common in gnomonics and the others are constrained by the requirement that the method should be universal all over the world.
If you want to change the definitions, you may also have to change some of the formulae, or introduce a conversion sub-routine.

English-speaking people nowadays use the word gnomon to refer to the whole of the line casting the shadow, but in this paper gnomon is used in its older and more traditional sense. Here the gnomon is a pin, perpendicular to the plane.

example of vertical dial at northern and southern latitude
Last Modified 02/05/2004 09:16:26

## main procedure

The aim of the main procedure is to convert a given sun's position, defined by the angle of declination decl and the sun's hourangle $\mathbf{t}$ into the coordinates $\mathbf{x}, \mathbf{y}$ of the shadow point of the (pin) gnomon or to output 'point isn't real'.
Just simply calculate the values $\mathrm{x} 0, \mathrm{y} 0, \mathrm{z} 0, \mathrm{x} 1, \mathrm{y} 1, \mathrm{z} 1, \mathrm{x} 2, \mathrm{y} 2, \mathrm{z} 2, \mathrm{x} 3, \mathrm{y} 3, \mathrm{z} 3$, and finaly $\mathrm{x}, \mathrm{y}$ as in the 5 routines below.
In these routines you see 2 decision points to find out if a point is or isn't real.

In : phi, g, i, d, decl, t
Out : x, y or 'point isn't real'
$\begin{array}{lr}\mathrm{x} 0=\sin \mathrm{t} \cdot \cos \text { decl } & \text { translation decl, } \mathrm{t} \text { into } \mathrm{x} 0, \mathrm{y} 0, \mathrm{z} 0 \\ \mathrm{y} 0=\cos \mathrm{t} \cdot \cos \text { decl } & \\ \mathrm{z} 0=\sin \text { decl } & \end{array}$
$\mathrm{R}=90$ - phi $\quad$ translation $\mathrm{x} 0, \mathrm{y} 0, \mathrm{z} 0$, into $\mathrm{x} 1, \mathrm{y} 1, \mathrm{z} 1$
$\mathrm{x} 1=\mathrm{x} 0$
$y 1=y 0 \cdot \cos R-z 0 \cdot \sin R$
$z 1=y 0 \cdot \sin R+z 0 \cdot \cos R$
if $\mathrm{z} 1<0$ point isn't real: sun is beneath the horizon.
$\mathrm{R}=\mathrm{d}$
translation $\mathrm{x} 1, \mathrm{y} 1, \mathrm{z} 1$, into $\mathrm{x} 2, \mathrm{y} 2, \mathrm{z} 2$
$x 2=x 1 \cdot \cos R-y 1 \cdot \sin R$
$y 2=x 1 \cdot \sin R+y 1 \cdot \cos R$
$\mathrm{z} 2=\mathrm{z} 1$
$\mathrm{R}=\mathrm{i}$
$\mathrm{x} 3=\mathrm{x} 2$
$y 3=y 2 \cdot \cos R-z 2 \cdot \sin R$
$\mathrm{z} 3=\mathrm{y} 2 \cdot \sin \mathrm{R}+\mathrm{z} 2 \cdot \cos \mathrm{R}$
if $\mathrm{z} 3<=0$ point isn't real: sun isn't above the dial.
$\mathrm{x}=\mathrm{x} 3 . \mathrm{g} / \mathrm{z} 3$
$y=y 3 . g / z 3$
translation $\mathrm{x} 2, \mathrm{y} 2, \mathrm{z} 2$, into $\mathrm{x} 3, \mathrm{y} 3, \mathrm{z} 3$
by rotation around x -axis through angle i

## Remarks:

It is advisable to program each of the 5 routines separately rather than as one combined.
For the shadow points, you should bear in mind the desired maximum value for x and y . Otherwise you may perhaps calculate points that are very far away from your dial.


Last Modified 02/05/2004 09:16:26

## secondary procedures

On this page you find the secondary procedures to compute all kinds of lines on a flat sundial. Make a choice for the kind of lines you want to compute.
Chose a single line or make a loop for the lines in that kind in the range as mentioned.
Then for each line make a loop for a number of points for that line.
Sometimes this will be a loop for decl, another time this will be a loop for t or for something else.
Sometimes it is easier not to make loops directly for decl or t , but to make a loop for daynumbers and then to compute the needed decl and $t$ or get them out of a table.
In the same way you may get the equation of time if needed.
Most of the time I use a loop in daynumbers in the procedures below.
With each decl and t call the mainprocedure to get the wanted shadowpoint if real.

## Lines for local suntime.

Input (range of) wanted lines $u .0<=u<=24$
Calculate hourangle $\mathrm{t}=(\mathrm{u}-12) * 15$
Loop for daynumbers dn from 172 to 355
Calculate decl for daynumber ( $\mathrm{dn}+0.5$ ) (that is noon)
Call mainprocedure
Refinement: If you want to draw these lines to the intersection point of the (pole)style make a loop for decl from -90 to 90 instead of a loop for daynumbers. This only if v isn't 0 )

Lines for local suntime with equation of time curve for period dec. 21 to june 21.
Input (range of) wanted lines $u .0<=u<=24$
Loop for daynumbers dn from 355 to 538
If $\mathrm{dn}>366$ then $\mathrm{dn}=\mathrm{dn}-366$
Calculate decl for daynumber ( $\mathrm{dn}+0.5$ )
Calculate equation of time E for daynumber $(\mathrm{dn}+0.5$ )
Calculate hourangle $\mathrm{t}=(\mathrm{u}-12) * 15+\mathrm{E}$
Call mainprocedure
Lines for local suntime with equation of time curve for period june 21 to dec 21.
Input (range of) wanted lines $u .0<=u<=24$
Loop for daynumbers dn from 172 to 355
Calculate decl for daynumber ( $\mathrm{dn}+0.5$ )
Calculate equation of time E for daynumber $(\mathrm{dn}+0.5)$
Calculate hourangle $\mathrm{t}=(\mathrm{u}-12) * 15+\mathrm{E}$
Call mainprocedure
Lines for suntime for standard meridian. (This is time with longitude correction)
Input (range of) wanted lines $u .0<=u<=24$
Calculate hourangle $\mathrm{t}=(\mathrm{u}-12) * 15+\mathrm{LC}$
Loop for daynumbers dn from 172 to 355
Calculate decl for daynumber ( $\mathrm{dn}+0.5$ )
Call mainprocedure
Refinement: If you want to draw these lines to the intersection point of the (pole)style make a loop for decl from -90 to 90 instead of a loop for daynumbers. This only if $v$ isn't 0 )

## Lines for suntime for standard meridian

with equation of time curve for period dec. 21 to june 21.
Input (range of) wanted lines $u$. $0<=u<=24$
Loop for daynumbers dn from 355 to 538
If $\mathrm{dn}>366$ then $\mathrm{dn}=\mathrm{dn}-366$
Calculate decl for daynumber ( $\mathrm{dn}+0.5$ )
Calculate equation of time E for daynumber ( $\mathrm{dn}+0.5$ )
Calculate hourangle $\mathrm{t}=(\mathrm{u}-12) * 15+\mathrm{E}+\mathrm{LC}$
Call mainprocedure
Lines for suntime for standard meridian
with equation of time curve for period june 21 to dec 21.
Input (range of) wanted lines $u$. $0<=u<=24$
Loop for daynumbers dn from 172 to 355
Calculate decl for daynumber ( $\mathrm{dn}+0.5$ )
Calculate equation of time E for daynumber $(\mathrm{dn}+0.5)$
Calculate hourangle $\mathrm{t}=(\mathrm{u}-12) * 15+\mathrm{E}+\mathrm{LC}$
Call mainprocedure

## Lines for the sun's declination.

Input (range of) wanted lines for decl in the range of -23.44 to 23.44
Loop for hourangle $t$ in the range of -180 to 180
Call mainprocedure
Lines for dates (month, day).
Input (range of) months mth
Input (range of) days day
Calculate daynumber dn :
$\mathrm{p}=\operatorname{int}((\mathrm{mth}+9) / 12)$
$\mathrm{q}=\operatorname{int}(275 * \mathrm{mth} / 9)-2 * \mathrm{p}+$ day -30
if leapyear $\mathrm{dn}=\mathrm{q}+\mathrm{p}$ else $\mathrm{dn}=\mathrm{q}$
Calculate decl for ( $\mathrm{dn}+0.5$ )
Loop for hourangle $t$ in the range of -180 to 180
Call mainprocedure
Lines for Babylonian hours. Restriction -66.56 <= phi $<=66.56$
Input (range of) wanted lines $u$. $0<=\mathrm{u}<=24$
Loop for daynumbers dn from 172 to 355
Calculate decl for daynumber ( $\mathrm{dn}+0.5$ )
Calulate half daylength $\mathrm{T}=\arccos (-\tan \mathrm{phi} * \tan$ decl $)$
Calculate hourangle $\mathrm{t}=\mathrm{u}$ * $15-\mathrm{T}$
Call mainprocedure
Lines for Italian hours. Restriction - $66.56<=p h i<=66.56$
Input (range of) wanted lines $u .0<=u<=24$
Loop for daynumbers dn from 172 to 355
Calculate decl for daynumber ( $\mathrm{dn}+0.5$ )
Calulate half daylength $\mathrm{T}=\arccos (-\tan \mathrm{phi} * \tan$ decl $)$
Calculate hourangle $\mathrm{t}=\mathrm{u} * 15+\mathrm{T}$
Call mainprocedure

Lines for antique hours or unequal hours. Restriction -66.56 <= phi <= 66.56
Input (range of) wanted lines $u .0<=u<=12$
Loop for daynumbers dn from 172 to 355
Calculate decl for daynumber ( $\mathrm{dn}+0.5$ )
Calulate half daylength $\mathrm{T}=\arccos (-\tan \mathrm{phi} * \tan$ decl $)$
Calculate hourangle $\mathrm{t}=(\mathrm{u}-6) * \mathrm{~T} / 6$
Call mainprocedure

## Lines for the sun's azimut.

Input (range of) wanted lines a. $-180<=\mathrm{a}<=180$
Loop for the sun's height $\mathrm{h} .0<=\mathrm{h}<=90$
Calculate:
$\mathrm{x} 1=\sin \mathrm{a} * \cos \mathrm{~h}$
$\mathrm{y} 1=\cos \mathrm{a} * \cos \mathrm{~h}$
$\mathrm{z} 1=\sin \mathrm{h}$
$\mathrm{R}=-(90-\mathrm{phi})$
$\mathrm{x} 0=\mathrm{x} 1$
$\mathrm{y} 0=\mathrm{y} 1 * \cos \mathrm{R}-\mathrm{z} 1 * \sin \mathrm{R}$
$\mathrm{z} 0=\mathrm{y} 1$ * $\sin \mathrm{R}+\mathrm{z} 1$ * $\cos \mathrm{R}$
$\mathrm{decl}=\arcsin (\mathrm{z} 0)$
if decl is in range from -23.44 to 23.44 then call mainroutine half away with the values x1,y1,z1
(Start calculating $x 2, y 2, z 2$ and continue the mainprocedure )
else point isn't real

## Lines for the sun's height.

Input (range of) wanted lines h. $0<=\mathrm{h}<=90$
Loop for the sun's azimut a. $-180<=\mathrm{a}<=180$
Calculate:
$\mathrm{x} 1=\sin \mathrm{a} * \cos \mathrm{~h}$
$\mathrm{y} 1=\cos \mathrm{a} * \cos \mathrm{~h}$
$\mathrm{z} 1=\sin \mathrm{h}$
$\mathrm{R}=-(90-$ phi $)$
$\mathrm{x} 0=\mathrm{x} 1$
$\mathrm{y} 0=\mathrm{y} 1 * \cos \mathrm{R}-\mathrm{z} 1 * \sin \mathrm{R}$
$\mathrm{z} 0=\mathrm{y} 1 * \sin \mathrm{R}+\mathrm{z} 1 * \cos \mathrm{R}$
$\mathrm{decl}=\arcsin (\mathrm{z} 0)$
if decl is in range from - 23.44 to 23.44 then call mainroutine half away with values $\mathrm{x} 1, \mathrm{y} 1, \mathrm{z} 1$
(Start calculating $x 2, y 2, z 2$ and continue the mainprocedure )
else point isn't real
Lines for sidereal time for period dec. 21 to june 21.
Input (range of) wanted lines $u$. $0<=\mathrm{u}<=24$
Loop for daynumbers dn from 355 to 538
If $\mathrm{dn}>366$ then $\mathrm{dn}=\mathrm{dn}-366$
Calculate decl for daynumber ( $\mathrm{dn}+0.5$ )
Right ascension RA $=\arcsin (\tan \operatorname{dec} / / \tan 23.44)$
Hourangle $\mathrm{t}=\mathrm{u} * 15-$ RA
Call mainprocedure

## Lines for sidereal time for period june 21 to dec 21.

Input (range of) wanted lines $u$. $0<=\mathrm{u}<=24$
Loop for daynumbers dn from 172 to 355
Calculate decl for daynumber ( $\mathrm{dn}+0.5$ )
Right ascension RA $=180-\arcsin (\tan \mathrm{dec} / / \tan 23.44)$
Hourangle $\mathrm{t}=\mathrm{u} * 15-$ RA
Call mainprocedure
Lines for planetary time for period dec. 21 to june 21. Restriction -66.56 <= phi <= 66.56 (Remember that planetary time is different from antique or unequal time. I refer to what is written by Joseph Drecker in his book 'Die Theorie der Sonnenuhren', 1925, page 73.)
Input (range of) wanted lines $u .0<=u<=12$
Loop for daynumbers dn from 355 to 538
If $\mathrm{dn}>366$ then $\mathrm{dn}=\mathrm{dn}-366$
Calculate decl for daynumber ( $\mathrm{dn}+0.5$ )
Right ascension RA $=\arcsin (\tan \operatorname{dec} / / \tan 23.44)$
Longitude of sun LS $=\arcsin (\sin \mathrm{decl} / \sin 23.44)$
Longitude of rising point $\mathrm{LE}=\mathrm{LS}+\mathrm{u}$ * 15
Declination of rising point $\mathrm{DE}=\arcsin (\sin \mathrm{LE} * \sin 23.44)$
Right ascension of rising point $\mathrm{RE}=\arcsin (\tan \mathrm{DE} / \tan 23.44)$
Half day length of rising point $T=\arccos (-\tan \mathrm{phi} * \tan \mathrm{DE})$
Hourangle $\mathrm{t}=-\mathrm{T}-\mathrm{RA}+$ RE
Call mainprocedure
Lines for planetary time for period june 21 to dec 21. Restriction - $66.56<=p h i<=66.56$
(Remember that planetary time is different from antique or unequal time. I refer to what is written by Joseph Drecker in his book 'Die Theorie der Sonnenuhren', 1925, page 73.)
Input (range of) wanted lines $u .0<=u<=12$
Loop for daynumbers dn from 172 to 355
Calculate decl for daynumber ( $\mathrm{dn}+0.5$ )
Right ascension of sun RA = 180-arcsin( $\tan \operatorname{decl} / \tan 23.44)$
Longitude of sun LS $=180-\arcsin (\sin \mathrm{decl} / \sin 23.44)$
Longitude of rising point $\mathrm{LE}=\mathrm{LS}+\mathrm{u} * 15$
Declination of rising point $\mathrm{DE}=\arcsin (\sin \mathrm{LE} * \sin 23.44)$
Right ascension of rising point $\mathrm{RE}=\arcsin (\tan \mathrm{DE} / \tan 23.44)$
Half day length of rising point $\mathrm{T}=\arccos (-\tan \mathrm{phi} * \tan \mathrm{DE})$
Hourangle $\mathrm{t}=-\mathrm{T}-\mathrm{RA}+\mathrm{RE}$
Call mainprocedure

example of horizontal sundial with planetary hours for southern latitude 52.

## Remarks:

The loops for daynumber are made in that way that you may choose an incremental step of 1 or 3 days, just how many points you want to calculate.
If you know a line is a straight line start with the loop for each line at one side till you find the first point and than start the loop in reverse at the other side to find the second point. If the line isn't a real one, in both cases you will find no real point.
( Refinement: if you use the formulae to compute the sun's declination and the equation of time as given in the paragraph 'end notes' you will be a little more accurate if you calculate the values with $d n+0.5+L M / 360$.
In that way you get the values at your local noon. )

## end notes

Not only shadow points have to be computed but also the height of the (pole) style and the angle for the substyle.
This also can be done with the same mainprocedure.
To calculate these constants of the dial use these 5 routines with input decl $=90^{\circ}$ and $\mathrm{t}=0^{\circ}$, but don't use the 2 decision points.
Then $\mathrm{v}=\arcsin (\mathrm{z} 3)$. (no test of quadrant is necessary)
If $\mathrm{v}=0$ then the style is parallel to the dial's face and there isn't an intersectionpoint of the style with the dial
else: the coordinates of the intersectionpoint are $\mathrm{x}, \mathrm{y}$.
The substyle can be drawn from the footpoint of the gnomon ( point 0,0 ) to this intersectionpoint.

The value of v equals with the latitude where the sundial's plane becomes a horizontal plane. Also remember that if $v>0$ the endpoint of the style points to the north pole and the hourlines run clockwise but if $\mathrm{v}<0$ the endpoint of the style points to the south pole and the hourlines run anticlockwise.

However not necessary to construct your sundial I also give a formula to compute the hourangle of the substyle ts.
$\tan \mathrm{ts}=\sin \mathrm{i} * \sin \mathrm{~d} /(\cos \mathrm{phi} * \cos \mathrm{i}+\sin \mathrm{phi} * \sin \mathrm{i} * \cos \mathrm{~d})$
Controle ts for the right quadrant.
Fomulae to compute the equation of time and the sun's declination out of a daynumber:

```
L = DAGNR*360/365.2422 - 80.412001 DEGREES
EQUATION = - 109.2587*SIN( L) - 428.0240*COS( L)
    + 595.9691*SIN(2L) - 2.1295*COS(2L)
    + 4.5072*SIN(3L) + 19.2449*COS(3L) SECONDS (of time)
LAMBDA = L + 0.4365*SIN( L) + 1.8636*COS( L)
    - 0.0179*SIN(2L) + 0.0089*COS(2L) DEGREES
EPSILON = 23.43746
DECLINATION = ARCSIN(SIN LAMBDA * SIN EPSILON) DEGREES
```

Strictly these formulae are for 2014 (a year between two leap years) and for 12.00 UT, but for sundials you can use them during a long time.
See also 'Cousins', page 236, for such a fomula for the year 1931.

graph for the equation of time and the sun's declination

